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We propose a theory for the site-diluted Ising model which is an extension to 
disordered systems of the self-consistent Ornstein-Zernike approximation of 
Hoye and Stell. By using the replica method in the context of liquid-state 
theory, we treat the concentration of impurities as an ordinary thermodynamic 
variable. This approach is not limited to the weak-disorder regime or to the 
vicinity of the percolation point. A preliminary analysis using series expansion 
shows that it can predict accurately the dependence of the critical temperature 
on dilution and can reproduce the nonuniversal behavior of the effective 
exponents. The theory also gives a reasonable estimate of the percolation 
threshold. 

KEY WORDS: Disordered systems; Ornstein-Zernike equations; site-diluted 
Ising model. 

1. INTRODUCTION 

Some time ago, Hoye and Stell <~) proposed a self-consistent Ornstein- 
Zernike approach (SCOZA) for lattice gas or continuum fluid systems in 
which the direct correlation function c(r) that appears in the Ornstein- 
Zernike equation is chosen to ensure self-consistency between the com- 
pressibility and energy routes to the free energy. It has been shown only 
recently <2) that-this approximation provides very accurate predictions for 
the nonuniversal properties of the three-dimensional nearest-neighbor 
lattice gas (and thus of the corresponding Ising model) over most of the 
parameter space. Moreover, although the asymptotic critical exponents as 
those of the spherical model, the predicted effective exponents, near, but 
not asymptotically close to the critical points are in remarkable agreement 
with the true exponents of the 3-d Ising model. Our objective is to extend 
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this promising approach to magnetic or fluid systems in the presence of 
quenched disorder. In spite of the large body of work in this field over the 
last twenty years, the understanding of the influence of disorder on phase 
transitions is far from complete. In the present work, we consider the site- 
diluted Ising model that is probably the simplest example of such systems 
and has been studied both by analytical techniques and by numerical 
simulations (see ref. 3 and references therein). The former have been mostly 
used to investigate the critical behavior in the limits of weak or strong dis- 
order (near the percolation threshold), which still remains a controversial 
issue. Although unable to give definite answers for the asymptotic critical 
behavior (because of the strong influence of finite-size effects and the 
dramatic increase of relaxation times with dilution), numerical simulations 
provide good estimates of the effective exponents and the critical tem- 
perature for some selected values of the dilution./4-7) It would certainly be 
valuable to have a theory which yields quantitative predictions for these 
quantities at any dilution, even if it does not predict correctly the exact 
asymptotic critical behavior. We present in this paper the first steps we 
have made in this direction. The SCOZA scheme is generalized to study a 
site-disordered lattice gas model that has been recently proposed as a 
model for a fluid in a porous matrix, t8-1~ The site-diluted Ising model 
corresponds to a special value of the matrix-fluid interaction parameter. 
We treat the quenched degrees of freedom by the replica method. 

The paper is organized as follows. In Section II, we derive the SCOZA 
differential equations for this system. In Section III, we analyze the solution 
in terms of series expansion (both high-temperature and high-dilution 
series are considered) and we present some preliminary numerical results. 
A brief summary and a discussion are provided in Section IV. 

II. DERIVATION OF THE SCOZA EQUATIONS 

The starting point of our study is the lattice gas model for a fluid 
in a disordered matrix that has been introduced in ref. 8. We consider a 
d-dimensional hypercubic lattice where the sites can be occupied by two 
types of "particles", matrix (species 0) or fluid (species 1 ), with occupancy 
variables 1 - r / i  and ri respectively. The site disorder variables r/i's are 
quenched and take the values 0,1 at random such that rTi = p, where the 
overbar denotes the average over disorder. We exclude multiple occupancy 
of a site by assuming that the pair potentials all contain a point "hard- 
core". The Hamiltonian is 

n=-w,, ~ z, zj~7,r/j-Wo~ ~ I~,r/i(1-r/j)-t-~j~Tj(1-r/,)], 
<0"> <#'> 

(1) 
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where w~ > 0 and Wo~ are the fluid-fluid and fluid-matrix nearest-neighbor 
(n.n.) interactions and the sums are over n.n. pairs of sites. There are thus 
two independent variables, the dilution 1 - p  and the interaction ratio 
y= Wol/Wl~. This model encompasses the two effects exerted on a fluid by 
a disordered porous medium, namely the exclusion from the solid phase 
and the usually attractive interaction with the matrix walls. The matrix- 
dependent grand partition function for the fluid is given by 

o0 

~-"~I({F]i}) - -  ~ exp(fl/llN1) Z*exp( - f lH({r ,} ,  {/ '] i}) 
NI "-0 {ri} 

(2) 

where f l=(ksT)  -~ is the inverse temperature, /Zl is the fluid chemical 
potential, and the summation Y'.* signifies summation over the ri's subject 
to the restriction that Zi r~=N1.  Introducing as usual spin variables 
instead of occupancy variables (r i=(1-k-tri)/2, with a~= + 1), the grand 
partition for the lattice gas becomes a multiple of the partition function for 
an Ising model with Hamiltonian 

~ "  = - J ~ cr , cr g rl , rl g - K E [ cr , rl , ( 1 -  rl g ) + cr j rl j ( 1 -  rl , ) ] - h ~ cr i rl , " 
( ij> < ij> i 

(3) 

with J =  w1~/4, K = J ( 2 y -  1), and h =  1/2(p~ +qw~/2) where q is the coor- 
dination number of the lattice. In this work, we shall restrict ourselves to 
the case y = 1/2 where K = 0. Then, the Hamiltonian in Eq. (3) reduces to 
that of the site-diluted Ising model. <3) For a study of the general case 
(K 4= 0) within the mean-spherical approximation see refs. 8-10. 

In order to study the thermodynamics and the structure of the lattice 
gas described by Eq. (1), we use the replica method as discussed else- 
where. <~-~3) The thermodynamics is obtained from the averaged fluid 
grand potential which is a self-averaging quantity and is expressed via the 
replica trick as <13) 

- f lO ,  = In Z,({ ~i} ) "-- --ff lim a �9 - o  ~ Or"(S) (4) 

where I2reP(s) is the grand potential of an equilibrium mixture with (s + 1) 
components: s fluid replicas plus the matrix particles which are now con- 
sidered as annealed. The fluid replicas do not interact with each other but 
they do interact with the matrix (contrary to the standard replica approach 
to disordered spin systems, the average over disorder is not performed 
explicitly). One has thus replaced the study of the original quenched- 
annealed mixture by that of a multicomponent equilibrium mixture for 
which one can now use the standard methods of liquid-state statistical 



218 Kierlik, Rosinberg, and Tarjus 

mechanics. One can formally write integral equations, thermodynamic rela- 
tions, closure approximations for the ( s+  1)-component equilibrium 
mixture and then take the appropriate limit s ~ 0. This is how one derives 
the set of Omstein-Zemike equations relating the total pair correlation 
functions hi: of the quenched-annealed mixture to the corresponding direct 
correlation functions cu.(12) Since the approximation studied here does not 
allow for any replica symmetry breaking mechanism when taking the limit 
s ~ 0 ,  one only needs the replica-symmetric form of these equations 
(hereafter called the RSOZ equations), which writes in Fourier space as r 

/~oo(k) = ~oo(k) (5a) 
1 - po C'oo(k) 

/~o~ (k) = ~o~(k) (5b) 
[ 1 -Podoo(k)] [ 1 - p ,  at(k) ] 

/~c(k) = t?c(k) (5c) 
1 - p z  Oc(k) 

c2'(k) 1 1 
fib(k)= Cb(k)+P~ [ l -p ,ac (k ) ]  2 (5d) 

where P l is the average density of the fluid and P o = 1 - p  is the density 
of the matrix, hb=hl2(S=O), cb=clE(S=O), hc=hll(s=O)-hb, and c c -  
c~(s=O)-cb are the disconnected and connected parts of h~ and c~, 
where 1 and 2 denote two different fluid replicas. Moreover, ho~ = h~o and 
Co~ = C~o by symmetry. It is also worthwhile to note the following relations 
which can be deduced from the symmetry properties of the Hamiltonian 
when y = 1/2, 

p,EJ,, o + p,hc(r, p~)] = (p -p , )EJ , ,  o + (p -p , )  h~(r, P -P l ) ]  

plhol(r, Pl) + (P--Pl) hot(r, p - P l )  = -PJ,, o 

p~hb(r, p~)+(1 --p)  pl ho~(r, p~) 

= (p_p~)2 hb(r, p--p~) +(1 --P)(P--Pl) ho~(r, p-p~). 

(6a) 

(6b) 

(6c) 

When p~ = p/2 (or h = 0 in spin language), one has 

hol(r, p/2)= - J , .  0, 

hb(r, p/2)= 1 --p j,, o 
P 

(7a) 

(7b) 
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which implies 

1 1 
Col (r, p/2) = ~ c~(r, p/2) - ~ O 

P 
,,o. (8a) 

cb(r, p/2)=0 (8b) 

where we have used that Coo( r )=-J , .  o/P (hoo ( r )= - J , ,  o because of the 
core exclusion). 

We now make an Ornstein-Zemike type of approximation by assuming 
that the direct correlation functions have the same range as the corre- 
sponding interaction potentials. In the present case of n.n. interactions, this 
gives 

cb(r) =0  

o j  + , j  
C c ( r ) = c ~  , ,o c~ ~,~ 

Col(r) - c~ J,, o + Clol ~r,e 

(9) 

where e denotes a vector from the origin to one of its nearest neighbors and 
is the Kronecker symbol (the first equation is a consequence of the fact 

that there is no interaction between two fluid replicas). The mean-spherical 
l flwl and c~l=flWol. In approximation (MSA) ~s-~~ consists in setting c~= 

cX~(p~, p, T) and c~ C~o~(p~, p, T), contrast, in SCOZA, we allow c~= = 
and we determine these two functions by imposing thermodynamic self- 
consistency (see below), whereas c~ p, T) and c~ p, T) can be 
completely determined by imposing, as in MSA, the two core conditions 
ho~(r = 0 ) = h ~ l ( r = 0 ) = -  1 (note that h~ and hb do not satisfy themselves 
the core requirement). Starting form the Gibbs-Helmholtz relation between 
the averaged internal energy per fluid particle t~ and the averaged 
Helmholtz free-energy per fluid particle f, 

, , 1 0 >  
PI' P 

and differentiating with respect to P l and p, we get two self-consistency 
equations: 

02P 1 t~ = O~c(O) I (11) 
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and 

o2p, a ] _0Co,(0) I 
(12) 

where we have used that ~/~(0)=--02flfe"/Op~ Op#(~, f l - ' 0 ,  1,..., s) in the 
"replicated" equilibrium mixture. As far as we know, Eq. (12) (or its trans- 
lation in spin language) has never been considered in the context of dilute 
magnets. It is the originality of the present approach that p is treated via 
the replica trick as an ordinary thermodynamical variable (Po = 1 - p  is the 
concentration of the matrix particles) and not as an external parameter. 
ti is given by (9) 

q 
t i = - ~  [p,(1 +h l , )  + ( l - p ) ( 1  +h~,)]  (13) 

where h ~. = h o. (r = e) (in this equation and in the following we take w~ = 1 ). 
When p = 1, co(k) is just the direct correlation function of the pure system 
and Eqs. (11) and (13) reduce to the SCOZA equations of ref. 2. 

The MSA solution of the RSOZ equations for the correlation func- 
tions ~8-t~ is expressed in terms of the quantity z=p tqc~ / (1 -p~c  ~ and 
parametrized by y=Wol/Wll. The same expressions remain valid in 
SCOZA provided that y is now the state-dependent interaction ratio 
c~t/c ~. The two functions z(p~, p, T) and Y(Pt, P, T) are then obtained by 
solving the coupled partial differential equations, Eqs. (11) and (12). From 
refs. 9 and 10, and introducing the lattice Green's function 

1 f"  dk elk. r 
P(r, z) - (2~) d -~ d 1 - z2(k) (14) 

where 2(k) is the characteristic function of the lattice, ~4) we derive 

p,[O,.o+plhc(r)]=p --ApZ--(1--p)O2zZO'(z) P(z) (15) 

P(r, z) 
p~hb(r) = p(1 -- p) y2 0,. o -- 2yO P(Zi 

+ 02 zP'(r, z) + P(r, z)] 
P(z) 2 1 

(16) 

I P(r, z)] 
plho,(r)=p - y ~ , , o + O  P(z) (17) 
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where Apl - P l / P -  1/2, 0 = y-p~/p ,  P(z ) -  P(O, z), P'(r, z) =OP(r, z)/Oz, 
r = [ 1 -- 1/P(z)]/z, and ~'(z)=d~(z)/dz.  

After some calculations, this yields 

f i = [ A P l + ~ I [ p ( A p l + I ) + I - ,  1 +(~-APZ)IP(z)  

,18, 

1 1 (1 - z) P(z) 
~c(0) - p ( A p  1 + � 8 9  (�88 d p 2 ) _  (1 _p)02zZgt,(z ) (19) 

1 (0 + A p ,  + 1/2)( 1 - z) P ( z )  - 0 
0o1(0) = - -  (20) p ( � 88  

where fi=_ -2pl~/(pq). 
This completes the derivation of the SCOZA equations in the case 

where the lattice-gas model is isomorphic to the site-diluted Ising model (in 
fact, the preceding equations except Eqs. (13) and (18) remain valid when 
wol/w~l ~- 1/2). It may be noticed from Eqs. (18)-(20) that the solution of 
Eqs. (11)-(12) satisfies the symmetry relations z(p~, p, T)= z ( p -  p~, p, T) 
and Y(Pl, P, T)= 1 -  Y(P-Pl ,  P, T). Therefore the correlation functions 
given by Eqs. (15)-(17) satisfy the exact relations, Eqs. (6)-(7). Note also 
that we have 

0~c(0) [ = 00o~(01 (21) 
Op p. p, Op l p. p 

so that the self-consistency conditions, Eqs. (11)-(12), can be replaced by 
the equivalent system 

Ope (o) 

q 02~ 

20pOAp~ 

0[~o,(0)-- (Ap, + I/2)0c(0)] [ 

0[~o,(0)- (Apl + I/2),~c(0)] 
0p AP 1, P 

(22) 

(23) 

where we have used Apl as the density variable. 
Once z(p~, p, T) and Y(Pl, P, T) are known, all thermodynamic proper- 

ties (internal energy, pressure, entropy,...) can be obtained in a straight- 
forward way. The inverse fluid compressibility is calculated from ref. 13 

- 1 - p ~ c ( O )  (24) 
PIXl 
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and from Eq. (19) we readily see that X i -1 vanishes when z = 1, as in the 
pure case. t2) This defines the spinodal line and the critical point is reached 
when the spinodal meets the coexistence curve at pl =p/2  (i.e. zlp~ =0).  
Alternatively, we can locate the critical temperature by plotting X i -~ as a 
function of fl along the critical isochore. An important consequence of 
z~= 1 is that the present theory yields no phase transition in two dimen- 
sions because the Green's function P(z) diverges at z = 1 for d~< 2. For 
2 < d ~< 4, P( 1 ) is finite, but P'( 1 ) and, consequently, ~'( 1 ) diverge, which 
also seems to prevent the existence of a bona fide spinodal in the SCOZA 
description of disordered systems. However, in the particular case of the 
site-diluted Ising model (Wo~/Wl~ = 1/2), one has y(p/2, p, T ) =  1/2 so that 
0 vanishes identically on the critical isochore dpl  =0 ,  allowing for the 
existence of a point z~ = 1 at a non-zero-temperature. Although we have so 
far no convincing proof of it, we speculate that there exists also a full 
spinodal curve that is characterized by z = 1 and 0 = 0 .  We expect the 
asymptotic critical exponents to be those of the spherical model, as in the 
pure case. 

Finally we note that the critical internal energy can be readily 
obtained from Eq. (18): 

ql 11 f f c = - ~  3 - P - e ( 1 )  . (25) 

In Appendix A, some more explicit expressions of if, de(0), and d0~(0) 
are given in the case of the 3-d simple cubic lattice, using a nice approxima- 
tion for the Green's function proposed some time ago by Jancovici. t~5) 

III. SERIES EXPANSIONS 

The numerical solution of the coupled PDE's, Eqs. (11)-(12) or 
(22)-(23), is a difficult task which we defer to a later work. Here, we only 
give a qualitative analysis of the solution and some preliminary results 
obtained from series expansions. 

A. High-Temperature Series 

From Eqs. (11)-(12) and (18)-(20), it is straightforward to derive 
high-temperature series for z(pl ,  p, T) and y(pl ,  p, T). First, we note that 
when T goes to infinity the system must behave as a non-interacting lattice 
gas. Therefore, c~(p ~, p, T ~ oo ) ~ 0 so that z(p~ , p, T ~ oo) ~ 0. On the 
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other hand y(p~, p, T--,. oo)--,, 1/2, the bare value of the interaction ratio. 
Taking v = tanh(flJ) as the high temperature variable, we thus write 

z(pl, p, v)= ~ z,,(pl, p) v" 
n>~l 

Y(Pl, P,/3) = �89 + ~ Y,,(Pl, P)/3", 
n>~l 

(26) 

expand the Green's function P(z) is powers of z 

P(z) = 1 + ~ P,,z" (27) 
n>~2 

(with Pz = l/q), and substitute in the SCOZA equations. The coefficients 
z,,(p~, p) and y,,(p~, p) are polynomials in p~ and p that can be evaluated 
very easily using a symbolic computation software such as MAPLE. We 
then deduce from Eq. (22) the compressibility along the critical isochore 
(i.e., the zero-field susceptibility for the spin system). The result for the 3-d 
face centered cubic lattice (FCC) for instance, is 

-P- v) kTz p l -  2, 

1 
= - +  12/3+ 132pv 2 + (1396p 2 + 1 6 p -  8) v 3 

P 

+ ( 14436p 3 + 552p 2 --- 360p + 24) v 4 

+ ( 147160p 4 + 11800p 3 + ... 
43612 5..p 4944 3~2) v5 

2 +  '5' P - ~  

(22284736 pS 1002396 
+\ +--T-- 

p 4 _  790652 3 328268p2 
- - i f - - - P +  15 

- 2208p + /3 6 
9~___88) 2 103981372 

p6+  35 pS_  

11411356 
+ 35 p3 _ 

133756 
5 

186672 
p2+  .... 35 P - ~  

(5200266858 
+\ .... 35 

p 7 +  4225357904 
105 

16827836 p4 

1134125948 113281996 p 6  p5 + 
35 35 

p4 

7364330 1334636 
+ 21 35 

p 2 590616 
35 

125448'~ s 
P + - 35 j v + O(vg). (28) 
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which can be compared to the exact series C~6) 

kTz p~ = ~ ,  v = - +  12v+ 132pv 2 + 1404pZv 3 +(14700p3-48p) /34  
p 

+ (152532p 4 - 1 3 6 8 p  2 - 4 8 p )  v 5 

+ (1573716p5 _ 2 5 5 8 4 p 3  _ 1800p2)/36 

+ ( 16172148p 6 -  397104p4-  40608p 3 

-- 24p 2 + 48p) v 7 + ( 165697044p 7 -- 5549856p 5 

--723000p 4 -  2112p 3 + 3456p 2 + 48p)/3s + O(vg). 

(29) 

Our theory is thus exact through the O(v 2) term (when p =  1, however, it 
is exact through order O(v4)), and it can be checked that for higher-order 
terms the numerical values of the coefficients are very close to the exact 
ones when the dilution is in the range 0.5 ~ p ~< 1 (the relative error on the 
O(v s) term is then smaller than 5 %). Equally good results are obtained for 
the simple cubic (SC) and the body centered cubic (BCC) lattices. 

As a first estimate of the accuracy of the theorem, we can extract the 
critical temperature and the critical exponent ~, forming Pad6 approximants 
to the logarithmic derivative of Z(P~ = p/2, v). A selection of results for the 
SC, BCC, and FCC lattices is shown in Tables I-III. Except for the two 

Table I. Critical Temperature Tc and Effective Exponent Y for the 
Diluted Ising Model on a Simple Cubic Lattice from Pad6 

Approximants to the SCOZA High-Temperature Series ~ 

kT~M ~, 

p [4,5] [5,5] [6,5] MC [4,5]  [5 ,5]  [6,5] MC 

1 4.528 4.525 4.526 4.512 1.237 1.241 1.240 1.24 
0.95 4.279 4.277 4.279 4.262 1.253 1.256 1.253 1.28 
0.90 4.029 4.026 4.027 4.011 1.267 1.274 1.273 1.31 
0.80 3.511 3.510 3.509 3.499 1.336 1.339 1.342 1.35 
0.70 2.900 2.967 2.967 - -  1.791 1.473 1.471 
0.60 2.337 2.371 2.401 2.422 2.118 1.862 1.684 1.51 
0.50 - -  - -  1.841 1.849 __ m 1.851 1.49 
0.40 - -  1.129 1.300 1.209 - -  2.963 2.163 

~ The MC results are taken from ref. [6 ]  except for p = 0 . 4 0  which is taken from ref. [7] .  
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Table II. Critical Temperature To and Effective Exponent V for the 
Diluted Ising Model on a Body Centred Cubic Lattice from Padd 

Approximants to the SCOZA High-Temperature Series 
i i 

kTc/J  )' 

p [4,5] [5,5] [6,5] [4,5] [5,5] [6,5] 

1 6.376 6.388 6.382 1.230 1.207 1.221 

0.95 6.035 6.044 6.039 1.243 1.222 1.236 

0.90 5.690 5.692 5.694 1.260 1.257 1.253 

0.80 4.987 4.987 4.987 1.314 1.315 1.317 

0.70 4.264 4.264 4.258 1.410 1.410 1.425 

0.60 3.487 3.495 3.493 1.667 1.640 1.646 

0.50 2.589 2.630 2.663 2.871 2.462 2.200 

0.40 - -  m 1.777 - -  m 3.190 

lowest values of p, we observe a reasonable convergence for the critical 
temperature between the different approximants and the predictions are in 
good agreement with the simulation data when those are available (6'7) 
(note that for p = 1, our results are very close to those obtained from the 
solution of the SCOZA partial differential equation(2)). On the other hand, 
it is more difficult to obtain a reliable information on 7, as already observed 
in the analysis of the exact series. (~6" ~7) Clearly, what we get by this procedure 
is an effective exponent since spherical exponents are expected asymptoti- 
cally. We observe a rapid increase of 7 from the pure value, which is con- 
sistent with the behavior found in the simulations. 

Table III. Critical Temperature To and Effective Exponent y for the 
Diluted Ising Model on a Face Centred Cubic Lattice from Pad6 

Approximants to the SCOZA High-Temperature Series 

~ / J  

p 174,5 ] [ 5,5 ] [ 6,5 ] [ 4,5 ] [ 5,5 ] [ 6,5 ] 

1 9.835 9.835 9.825 1.223 1.223 1.251 

0.95 9.311 9.313 9.288 1.237 1.236 1.333 

0.90 8.787 8.796 8.756 1.253 1.266 1.362 

0.80 7.693 7.662 7.699 1.348 1.603 1.325 

0.70 6.569 6.590 6.593 1.569 1.445 1.435 

0.60 5.452 5.438 5.452 1.597 1.605 1.596 

0.50 4.097 4.233 4.305 2.554 1.986 1.654 

0.40 - -  - -  3.120 ~ - -  1.669 
i 
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B. p-Expansion and Percolation 

Although the above results show that the critical temperature 
decreases with p, it is not immediately obvious that T~ in this theory goes 
to zero at a finite value of the dilution corresponding to the geometric per- 
colation threshold. (3) If such a critical p~ exists, the probability of finding 
an infinite cluster of spins is zero when p < p~ and a transition becomes 
impossible. The zero temperature limit of the expansion 

( " )  X P, =~,  P = ~'. X,,(fl)P" (30) 
n>~O 

then becomes the mean cluster size expansion for site percolation. 
The p-expansion of z(pl, p, T) and Y(Pt, P, T) requires the solution of 

partial differential equations at each order in p, and here we shall content 
ourselves with the derivation of the lowest-order term only. When p--, 0, 
the fluid particles are isolated one from each others and we expect that 
z ~ 0. On the other hand, the limiting value of y (or of/9 = y - p ~/p) is not 
trivial. We thus write 

z(p,, p, .B)= ~ z,,(Apl, fl) p" 
,,>_.l (31) 

0(p,, p,p)=Oo(Ap,,13)+ ~ O.(Ap,,p) p", 
n>~l 

expand again the Green's function in powers of z, and replace in 
Eqs. (22)-(23). At lowest order. Eq. (22) yields 

Zl(Ap,, fl) c3 0o(Ap,, fl) z,(Ap,, fl) 
' Ap] = c3Ap �88 ' (32) 
~ - -  I 

which has the solution 

P) (�88 f~P' !t't2 dt, 
- -  

(33) 

where we have used 0o(0, f l)= 0. Replacing into Eq. (23) and introducing 
the auxiliary variablef(Apl, fl)= JgP, Zl(t, fl)/(1/4-t 2) dt, we get, at lowest 
order in p, 

af(zlp,, p) 
=q Ap, +-~ OAp, 

+ 2 Ap, (~ -  Ap~ ) f(Ap,, fl)] . (34) 
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As shown in Appendix B, this second-order partial differential equa- 
tion can be solved by taking the Laplace transform of f(Ap~, fl) with 
respect to ft. The solution is expressed in terms of associated Legendre 
functions and exhibits two noticable properties. First, the zero-temperature 
limit is well-defined and can be obtained by setting the 1.h.s. of Eq. (34) 
to 0. Eq. (B8) yields 

Zl(Apl, T = 0 ) = 4 q  - A p  2 1 - A p l  In 1/2-Apl  ' (35) 

from which we get 

1/2 + Apl 
In 

Apl 1 1 /2-Apl  

Oo(Ap~, T = 0 ) =  2 8 l - A p ~  In 1/21/2_Ap~" + Ap~_ (36) 

Secondly, although Zl(Apl , fl) goes to 0 when dpl ~ +_. 1/2 as it should be, 
its behavior at Apl = + 1/2 is nonanalytic (in other words, the virial expan- 
sion of z l in powers of P l has a radius of convergence equal to zero). We 
conjecture that these two properties hold at all orders in p when p is 
smaller than Pc- 

We can now determine the value of Pc. If z(pl, p, T) and Y(Pl, P, T) 
remain finite when T ~  0, this is also true for ~c(0) and do1(0) and their 
derivatives with respect to fl go to 0 in this limit. Then Eq. (23) implies 

02~ 
lim 

p~oo Op O A pl 
=0. (37) 

p 

Therefore a~/SApl does not depend on p at T=0.  
z(p 1, P = 0, T) = 0 and thus ~(Ap 1, P = 0, T) = Ap i + 1/2, we have 

Since 

~(Pl, P, T = 0 )  =dpl + 1/2 + pF(p), (38) 

where F(p) is some function ofp. But since the internal energy is zero when 
p l = 0 ,  F ( p ) = 0  and we find from Eq. (18) that z (p l ,p ,T=O)  and 
0(pl, p, T =  0) are solutions of 

( 4 - A P 2 )  ( I p ( z ) - p ) +  (1- -p)O[O(~(z) lp ' (z ) - - ip(z) ) - -2 ,dpl lp(z) ]  =0  

(39) 

822/89/1-2-16 
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(it can be checked that Zl(dp~,T=O) and Oo(Ap~,T=O) given by 
Eqs. (35) and (36) are indeed solutions of this equation when expanded at 
first order in p). In particular, on the isochore dpl= 0 where 0 = 0, one has 
the simple relation 

p = @(z). (40) 

The percolation threshold is reached when a phase transition for the 
fluid (or the magnetic spins) becomes possible, i.e., when z = 1. Hence 

1 
pc=~k(1 )= l  P(1)" (41) 

Remarkably, this result is the same as the one obtained by using the MSA 
for the pair connectedness function, tls' 19) It gives a reasonable prediction 
for p~ in 3 dimensions (p~=0.3405, 0.2892, and 0.2563 instead of 0.310, 
0.243, and 0.195 for the SC, BCC and FCC lattices, respectively) and yields 
the spherical model values for the percolation exponents yp and vp (on the 
other hand, the upper critical dimension is 4 instead of the correct value 6). 
It happens that some Pad6 approximants to the high-temperature series are 
able to predict accurately these values of p~. This is the case for instance 
of the [5,3] Pad6 for the SC lattice, which yields p~=0.34533, or, even 
better, the [4,3] Pad6 for the BCC lattice which yields p~=0.28219. We 
have not tried, however, to include this information more systematically by 
constructing biased approximants. 

IV. CONCLUSION 

This preliminary analysis of the SCOZA equations for the site-diluted 
Ising model is encouraging. The theory seems to predict accurately the 
variations of Tc with dilution and it may also describe the nonuniversal 
behavior of the effective exponents observed in the simulations or in 
experiments.- Several important points, however, deserve a more extensive 
study, like for instance the existence of a spinodal, the behavior of To(p) 
in the vicinity of p = Pc or the possible occurence of Griffiths singularities. 
It should be also noticed that the theory presented here cannot account for 
the replica symmetry breaking mechanism which has been recently 
suggested in the literature, t2~ For that purpose, one needs a closure rela- 
tion to the Omstein-Zemike equations that relates in a nonlinear fashion 
the direct correlation functions c=,p(r)'s to the total correlation functions 
h=,p(r)'s. Such a closure relation could be for instance the hypernetted 
chain equation, t2~) Work in this direction is in progress. 
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A P P E N D I X  A 

Some time ago, Jancovici (~s) proposed a simple approximation for the 
Green's function of the simple cubic lattice that reproduces the leading 
terms of the behavior at z = 1. It reads 

P ( z ) -  1 -" zqJ(z) P ( z ) -  
6r 2 

1 + 3r 2 
(A1) 

which yields 

1 - ( 1 - z 2 ) ' / 2  

P(z) = 3 z2 + 1 - ( 1  - z 2 )  1/2 (A2) 

and 

1 ~/2) 
r  2) . (a3) 

This approximation can be used to simplify the expressions of the internal 
energy and the correlation functions at k = 0  given by Eqs. (18)-(20). It is 
now convenient to take ~ ( z ) = ~ ( A p l , p ,  T) as the dependent variable 
instead of z in the differential equations ( 11 )-(12) or (22)-(23) (0 being 
the other dependent variable). For instance, after some calculations, 
Eqs. (22)-(23) become 

c3 { ( l - - 3 f f ) 3 ( l + 3 f f )  ) 
0p ( I + 3f f2)[( I /4 -- Ap2)( I - 9ff 2) + 6g~2(I - p)0 2 ] 

1 0 ( 60~(1-~)(1-9~ 2) } 
p a Apl [ ( 1/4 - Ap])(1 - 9~ 2) + 6~2( 1 - p) 02 ] 

(A4) 

and 

-Ap~10+2(1-p) 00 1 902-Ap~ q d p~ +2c3p O A p ~ 

1 0 { 6&p(1-@)(1-9@ 2) ) 
p 0l~ [ ( 1/4 - ~r  1 - 9~  ~) + 6 ~ ' (  I - p )  0 ~ ] " 

(A5)  
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A P P E N D I X  B 

In order to solve the partial differential equation, Eq. (34), we take the 
Laplace transform off(Ap~, fl) with respect to fl, 

f(ap,,s)= e-P~f(ap,, fl) d/3. (B1) 

and we rewrite Eq. (34) as 

02f(x,s) Of(x,s) ( l + 2 s )  4q x 
(1--X 2) Ox-------5-----2x 0 ~ +  6--4 1 --X2 f(x,s)= s 1--X 2" (B2) 

where x = 2 Ap~. The corresponding homogeneous equation is a Lcgcndre 
differential equation with regular singularities at 0,1 and oo, whose solu- 
tions are the associated Legendre functions of the first and second kinds, (22) 
P,(x) and Q~(x), with v=2  and p 2(1 +2s) ~/2. The solution of the 
inhomogeneous equation is then 

f(x, s)= _4q 2_2~/'(2-/~/2) F(3/2-~/2) 
s F(2+/.t/2)F(3/2+l~/2) 

I xtp~(t) xtQ~(t) ] 
x Q/~(x)fo i -  t: dt-P/2(x)~o i "  t ~:'dt 

+ A(s) e~(x) + B(s) Q~(x), (B3) 

where F is the gamma function and A(s) and B(s) are two integration 
constants. Since the solution of Eq. (B2) is odd in x, we have 

Q~(0) 
A(s)  = - - B ( s )  ~ (B4) 

P~(O) 

and we determine B(s) by imposing that f(x, s) has a finite limit when 
x-+ + 1. Using the following relation between Legendre functions, t23) 

2Q~(x) sin(/~n)= rt [ PU~(x) cos(an)-  F(v-/~ + 1 ) F ( v  +/t + ! ) P~-~'(x)] , (B5) 

the duplication formula for the gamma function, and the explicit expression 
of P~(x), 

P~(x)  = - - - - - -  F(1- / t )  i 1 -  1 , p  ( 1 - x ) +  (1 -~ ) (2 - /~ )  
(1 --x)2], 

(B6) 
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we obtain 

B(s) =--4qs f2 tP2U(1 - t 2t) ~ d t  (B7) 

and finally 

f(x, s)= 2qn [P~-Z(x);o tP;(t) dt + P~(x) SI tP2U(t) 
s sin(/tn--------~ 1 -- t z . 1 -- t 2 dt 

I'(3 +P) fo ̀  tP2u(t) ] 
-P~-~(x) r(3-~----~ l_t-------T-dt . (B8) 

The f l ~  oo limit o f f (x ,  fl), if it exists, is given by lims_.oSf(X,S). It is 
readily obtained from Eqs. (B3), (B4) and (B7), using 

e2(x) = 3(1 - x 2) 

3 1 + x  5 - 3 x  2 
. . . . . . .  + X ~  QZ(x) ~ ( 1 - x  2) l n l _ x  1 - x  2 

(B9) 

The result is 

q 
f(x,  oo)=qx + ~ ( 1  - x  2) l n ~  

l + x  
1 - x  (B10) 

which is the solution of Eq. (34) when the 1.h.s is 0. 
As can be seen from Eqs. (B6) and (B8), the general solution of 

Eq. (B2) is nonanalytic at x = +_ 1, although it contains an analytic part 
that can be also obtained by expanding f(x,  fl) in powers of x +_ 1 (virial 
expansion) and by solving the differential equation, Eq. (34), order by 
order. 
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